Carathéodory and Helly-numbers of convex-product-structures

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimality certificates for convex minimization and Helly numbers

We consider the problem of minimizing a convex function over a subset of R that is not necessarily convex (minimization of a convex function over the integer points in a polytope is a special case). We define a family of duals for this problem and show that, under some natural conditions, strong duality holds for a dual problem in this family that is more restrictive than previously considered ...

متن کامل

Carathéodory, Helly and the Others in the Max-Plus World

Carathéodory’s, Helly’s and Radon’s theorems are three basic results in discrete geometry. Their max-plus counterparts have been proved by various authors. In this paper, more advanced results in discrete geometry are shown to have also their max-plus counterparts: namely, the colorful Carathéodory theorem and the Tverberg theorem. A conjecture connected to the Tverberg theorem – Sierksma’s con...

متن کامل

Helly Numbers of Polyominoes

We define the Helly number of a polyomino P as the smallest number h such that the h-Helly property holds for the family of symmetric and translated copies of P on the integer grid. We prove the following: (i) the only polyominoes with Helly number 2 are the rectangles, (ii) there does not exist any polyomino with Helly number 3, (iii) there exist polyminoes of Helly number k for any k 6= 1, 3.

متن کامل

Bounding Helly Numbers via Betti Numbers

We show that very weak topological assumptions are enough to ensure the existence of a Hellytype theorem. More precisely, we show that for any non-negative integers b and d there exists an integer h(b, d) such that the following holds. If F is a finite family of subsets of R such that β̃i ( ⋂G) ≤ b for any G ( F and every 0 ≤ i ≤ dd/2e−1 then F has Helly number at most h(b, d). Here β̃i denotes t...

متن کامل

Helly numbers of acyclic families

The Helly number of a family of sets with empty intersection is the size of its largest inclusionwise minimal sub-family with empty intersection. Let F be a finite family of open subsets of an arbitrary locally arc-wise connected topological space Γ. Assume that for every sub-family G ⊆ F the intersection of the elements of G has at most r connected components, each of which is a Q-homology cel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pacific Journal of Mathematics

سال: 1975

ISSN: 0030-8730,0030-8730

DOI: 10.2140/pjm.1975.61.275